Substrate Stiffness Regulates Filopodial Activities in Lung Cancer Cells
نویسندگان
چکیده
Microenvironment stiffening plays a crucial role in tumorigenesis. While filopodia are generally thought to be one of the cellular mechanosensors for probing environmental stiffness, the effects of environmental stiffness on filopodial activities of cancer cells remain unclear. In this work, we investigated the filopodial activities of human lung adenocarcinoma cells CL1-5 cultured on substrates of tunable stiffness using a novel platform. The platform consists of an optical system called structured illumination nano-profilometry, which allows time-lapsed visualization of filopodial activities without fluorescence labeling. The culturing substrates were composed of polyvinyl chloride mixed with an environmentally friendly plasticizer to yield Young's modulus ranging from 20 to 60 kPa. Cell viability studies showed that the viability of cells cultured on the substrates was similar to those cultured on commonly used elastomers such as polydimethylsiloxane. Time-lapsed live cell images were acquired and the filopodial activities in response to substrates with varying degrees of stiffness were analyzed. Statistical analyses revealed that lung cancer cells cultured on softer substrates appeared to have longer filopodia, higher filopodial densities with respect to the cellular perimeter, and slower filopodial retraction rates. Nonetheless, the temporal analysis of filopodial activities revealed that whether a filopodium decides to extend or retract is purely a stochastic process without dependency on substrate stiffness. The discrepancy of the filopodial activities between lung cancer cells cultured on substrates with different degrees of stiffness vanished when the myosin II activities were inhibited by treating the cells with blebbistatin, which suggests that the filopodial activities are closely modulated by the adhesion strength of the cells. Our data quantitatively relate filopodial activities of lung cancer cells with environmental stiffness and should shed light on the understanding and treatment of cancer progression and metastasis.
منابع مشابه
Differential Attachment of Pulmonary Cells on PDMS Substrate with Varied Features
Cancer is now a global concern, and control of the function of cancer cells is recognized as an important challenge. Although many aggressive chemical and radiation methods are in practice to eliminate cancer cells, most imply severe adverse toxic effects on patients. Taking advantage of natural physical differences between cancer and normal cells might benefit the patient with more specific cy...
متن کاملDifferential Attachment of Pulmonary Cells on PDMS Substrate with Varied Features
Cancer is now a global concern, and control of the function of cancer cells is recognized as an important challenge. Although many aggressive chemical and radiation methods are in practice to eliminate cancer cells, most imply severe adverse toxic effects on patients. Taking advantage of natural physical differences between cancer and normal cells might benefit the patient with more specific cy...
متن کاملYes-associated protein regulates the growth of human non-small cell lung cancer in response to matrix stiffness.
The Yes‑associated protein (YAP) transcriptional coactivator is recognized as a crucial regulator of human cancer. However, its involvement in human non‑small cell lung cancer (NSCLC) in response to physical cues remains unclear. In this study, substrates with different rigidity were generated in order to evaluate the role of YAP, and its upstream regulators in the Hippo pathway, in the regulat...
متن کاملSubstrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells.
AIM: The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC) in the lung, including their deposition and organization of extracellular matrix (ECM) proteins. METHODS: Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates...
متن کاملFormin 2 regulates the stabilization of filopodial tip adhesions in growth cones and affects neuronal outgrowth and pathfinding in vivo.
Growth cone filopodia are actin-based mechanosensory structures that are essential for chemoreception and the generation of contractile forces necessary for directional motility. However, little is known about the influence of filopodial actin structures on substrate adhesion and filopodial contractility. Formin 2 (Fmn2) localizes along filopodial actin bundles and its depletion does not affect...
متن کامل